Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Nature ; 625(7996): 813-821, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172637

ABSTRACT

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Host Microbial Interactions , Metagenome , Humans , Acetylgalactosamine/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cohort Studies , Computer Simulation , Faecalibacterium prausnitzii/genetics , Gastrointestinal Microbiome/genetics , Genome, Human/genetics , Genotype , Host Microbial Interactions/genetics , In Vitro Techniques , Metagenome/genetics , Multigene Family , Netherlands , Tanzania
2.
BMC Med ; 20(1): 485, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522747

ABSTRACT

BACKGROUND: Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. METHODS: To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. RESULTS: A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. CONCLUSIONS: Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Humans , Isoleucine , Mendelian Randomization Analysis , Cross-Sectional Studies , Amino Acids, Branched-Chain/metabolism , Obesity/epidemiology , Obesity/genetics , Valine/genetics
3.
BMC Res Notes ; 15(1): 345, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36348468

ABSTRACT

OBJECTIVES: This study is performed in the frame of a bigger study dedicated to genomics and transcriptomics of parthenogenesis in vertebrates. Among vertebrates, obligate parthenogenesis was first described in the lizards of the genus Darevskia. In this genus, all found parthenogenetic species originated via interspecific hybridization. It remains unknown which genetic or genomic factors play a key role in the generation of parthenogenetic organisms. Comparative genomic and transcriptomic analysis of parthenogens and their parental species may elucidate this problem. Darevskia valentini is a paternal species for four (of seven) parthenogens of this genus, which we promote as a particularly important species for the generation of parthenogenetic forms. DATA DESCRIPTION: Total cellular RNA was isolated from kidney and liver tissues using the standard Trizol Tissue RNA Extraction protocol. Sequencing of transcriptome libraries prepared by random fragmentation of cDNA samples was performed on an Illumina HiSeq2500. Obtained raw sequences contained 117,6 million reads with the GC content of 47%. After preprocessing, raw data was assembled by Trinity and produced 491,482 contigs.


Subject(s)
Lizards , Animals , Lizards/genetics , Transcriptome , Parthenogenesis/genetics , Kidney , Liver , RNA
4.
Nat Med ; 28(11): 2333-2343, 2022 11.
Article in English | MEDLINE | ID: mdl-36216932

ABSTRACT

The levels of the thousands of metabolites in the human plasma metabolome are strongly influenced by an individual's genetics and the composition of their diet and gut microbiome. Here, by assessing 1,183 plasma metabolites in 1,368 extensively phenotyped individuals from the Lifelines DEEP and Genome of the Netherlands cohorts, we quantified the proportion of inter-individual variation in the plasma metabolome explained by different factors, characterizing 610, 85 and 38 metabolites as dominantly associated with diet, the gut microbiome and genetics, respectively. Moreover, a diet quality score derived from metabolite levels was significantly associated with diet quality, as assessed by a detailed food frequency questionnaire. Through Mendelian randomization and mediation analyses, we revealed putative causal relationships between diet, the gut microbiome and metabolites. For example, Mendelian randomization analyses support a potential causal effect of Eubacterium rectale in decreasing plasma levels of hydrogen sulfite-a toxin that affects cardiovascular function. Lastly, based on analysis of the plasma metabolome of 311 individuals at two time points separated by 4 years, we observed a positive correlation between the stability of metabolite levels and the amount of variance in the levels of that metabolite that could be explained in our analysis. Altogether, characterization of factors that explain inter-individual variation in the plasma metabolome can help design approaches for modulating diet or the gut microbiome to shape a healthy metabolome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Metabolome/genetics , Diet , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Phenotype , Feces/microbiology
5.
Genes (Basel) ; 13(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-36140737

ABSTRACT

The extant reptiles are one of the most diverse clades among terrestrial vertebrates and one of a few groups with instances of parthenogenesis. Due to the hybrid origin of parthenogenetic species, reference genomes of the parental species as well as of the parthenogenetic progeny are indispensable to explore the genetic foundations of parthenogenetic reproduction. Here, we report on the first genome assembly of rock lizard Darevskia valentini, a paternal species for several parthenogenetic lineages. The novel genome was used in the reconstruction of the comprehensive phylogeny of Squamata inferred independently from 7369 trees of single-copy orthologs and a supermatrix of 378 conserved proteins. We also investigated Hox clusters, the loci that are often regarded as playing an important role in the speciation of animal groups with drastically diverse morphology. We demonstrated that Hox clusters of D. valentini are invaded with transposons and contain the HoxC1 gene that has been considered to be lost in the amniote ancestor. This study provides confirmation for previous works and releases new genomic data that will contribute to future discoveries on the mechanisms of parthenogenesis as well as support comparative studies among reptiles.


Subject(s)
Lizards , Animals , Genome/genetics , Lizards/genetics , Microsatellite Repeats , Parthenogenesis/genetics , Phylogeny
6.
Commun Biol ; 5(1): 565, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35681050

ABSTRACT

The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.


Subject(s)
Aging , Telomere , Aging/genetics , Epigenesis, Genetic , Female , Humans , Life Style , Parents , Pregnancy , Telomere/genetics
7.
J Crohns Colitis ; 16(3): 414-429, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-34491321

ABSTRACT

BACKGROUND AND AIMS: Protein profiling in patients with inflammatory bowel diseases [IBD] for diagnostic and therapeutic purposes is underexplored. This study analysed the association between phenotype, genotype, and the plasma proteome in IBD. METHODS: A total of 92 inflammation-related proteins were quantified in plasma of 1028 patients with IBD (567 Crohn's disease [CD]; 461 ulcerative colitis [UC]) and 148 healthy individuals to assess protein-phenotype associations. Corresponding whole-exome sequencing and global screening array data of 919 patients with IBD were included to analyse the effect of genetics on protein levels (protein quantitative trait loci [pQTL] analysis). Intestinal mucosal RNA sequencing and faecal metagenomic data were used for complementary analyses. RESULTS: Thirty-two proteins were differentially abundant between IBD and healthy individuals, of which 22 proteins were independent of active inflammation; 69 proteins were associated with 15 demographic and clinical factors. Fibroblast growth factor-19 levels were decreased in CD patients with ileal disease or a history of ileocecal resection. Thirteen novel cis-pQTLs were identified and 10 replicated from previous studies. One trans-pQTL of the fucosyltransferase 2 [FUT2] gene [rs602662] and two independent cis-pQTLs of C-C motif chemokine 25 [CCL25] affected plasma CCL25 levels. Intestinal gene expression data revealed an overlapping cis-expression [e]QTL-variant [rs3745387] of the CCL25 gene. The FUT2 rs602662 trans-pQTL was associated with reduced abundances of faecal butyrate-producing bacteria. CONCLUSIONS: This study shows that genotype and multiple disease phenotypes strongly associate with the plasma inflammatory proteome in IBD, and identifies disease-associated pathways that may help to improve disease management in the future.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Case-Control Studies , Colitis, Ulcerative/diagnosis , Genotype , Humans , Inflammatory Bowel Diseases/genetics , Phenotype , Proteome/genetics
8.
Data Brief ; 39: 107685, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917712

ABSTRACT

Darevskia rock lizards include 29 sexual and seven parthenogenetic species of hybrid origin distributed in the Caucasus. All seven parthenogenetic species of the genus Darevskia were formed as a result of interspecific hybridization of only four sexual species. It remains unknown what are the main advantages of interspecific hybridization along with switching on parthenogenetic reproduction in evolution of reptiles. Data on whole transcriptome sequencing of parthenogens and their parental ancestors can provide value impact in solving this problem. Here we have sequenced ovary tissue transcriptomes from unisexual parthenogenetic lizard D. unisexualis and its parental bisexual ancestors to facilitate the subsequent annotation and to obtain the collinear characteristics for comparison with other lizard species. Here we report generated RNAseq data from total mRNA of ovary tissues of D. unisexualis, D. valentini and D. raddei with 58932755, 51634041 and 62788216 reads. Obtained RNA reads were assembled by Trinity assembler and 95141, 62123, 61836 contigs were identified with N50 values of 2409, 2801 and 2827 respectively. For further analysis top Gene Ontology terms were annotated for all species and transcript number was calculated. The raw data were deposited in the NCBI SRA database (BioProject PRJNA773939). The assemblies are available in Mendeley Data and can be accessed via doi:10.17632/rtd8cx7zc3.1.

9.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34782459

ABSTRACT

Although there have been many studies of gene variant association with different stages of HIV/AIDS progression in United States and European cohorts, few gene-association studies have assessed genic determinants in sub-Saharan African populations, which have the highest density of HIV infections worldwide. We carried out genome-wide association studies on 766 study participants at risk for HIV-1 subtype C (HIV-1C) infection in Botswana. Three gene associations (AP3B1, PTPRA, and NEO1) were shown to have significant association with HIV-1C acquisition. Each gene association was replicated within Botswana or in the United States-African American or United States-European American AIDS cohorts or in both. Each associated gene has a prior reported influence on HIV/AIDS pathogenesis. Thirteen previously discovered AIDS restriction genes were further replicated in the Botswana cohorts, extending our confidence in these prior AIDS restriction gene reports. This work presents an early step toward the identification of genetic variants associated with and affecting HIV acquisition or AIDS progression in the understudied HIV-1C afflicted Botswana population.


Subject(s)
Genetic Variation , Genome-Wide Association Study , HIV Infections/genetics , Acquired Immunodeficiency Syndrome , Adaptor Protein Complex 3/genetics , Adaptor Protein Complex beta Subunits/genetics , Botswana/epidemiology , Genotype , HIV Infections/epidemiology , Humans , Nerve Tissue Proteins/genetics , Receptor-Like Protein Tyrosine Phosphatases, Class 4/genetics , Receptors, Cell Surface/genetics
10.
J Hered ; 112(6): 540-548, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34146095

ABSTRACT

The Puma lineage within the family Felidae consists of 3 species that last shared a common ancestor around 4.9 million years ago. Whole-genome sequences of 2 species from the lineage were previously reported: the cheetah (Acinonyx jubatus) and the mountain lion (Puma concolor). The present report describes a whole-genome assembly of the remaining species, the jaguarundi (Puma yagouaroundi). We sequenced the genome of a male jaguarundi with 10X Genomics linked reads and assembled the whole-genome sequence. The assembled genome contains a series of scaffolds that reach the length of chromosome arms and is similar in scaffold contiguity to the genome assemblies of cheetah and puma, with a contig N50 = 100.2 kbp and a scaffold N50 = 49.27 Mbp. We assessed the assembled sequence of the jaguarundi genome using BUSCO, aligned reads of the sequenced individual and another published female jaguarundi to the assembled genome, annotated protein-coding genes, repeats, genomic variants and their effects with respect to the protein-coding genes, and analyzed differences of the 2 jaguarundis from the reference mitochondrial genome. The jaguarundi genome assembly and its annotation were compared in quality, variants, and features to the previously reported genome assemblies of puma and cheetah. Computational analyzes used in the study were implemented in transparent and reproducible way to allow their further reuse and modification.


Subject(s)
Felidae , Puma , Animals , Female , Genome , Genomics , Male , Molecular Sequence Annotation , Puma/genetics
11.
medRxiv ; 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33851187

ABSTRACT

Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.

12.
Nat Genet ; 53(2): 156-165, 2021 02.
Article in English | MEDLINE | ID: mdl-33462485

ABSTRACT

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10-8) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10-20), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10-10 < P < 5 × 10-8) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.


Subject(s)
Gastrointestinal Microbiome/physiology , Genetic Variation , Quantitative Trait Loci , Adolescent , Adult , Bifidobacterium/genetics , Child , Child, Preschool , Cohort Studies , Female , Gastrointestinal Microbiome/genetics , Genome-Wide Association Study , Humans , Lactase/genetics , Linkage Disequilibrium , Male , Mendelian Randomization Analysis , Metabolism/genetics , RNA, Ribosomal, 16S
13.
Cell Rep ; 33(1): 108212, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33027657

ABSTRACT

Bile acids (BAs) are implicated in the etiology of obesity-related conditions such as non-alcoholic fatty liver disease. Differently structured BA species display variable signaling activities via farnesoid X receptor (FXR) and Takeda G protein-coupled BA receptor 1 (TGR5). This study profiles plasma and fecal BAs and plasma 7α-hydroxy-4-cholesten-3-one (C4) in 297 persons with obesity, identifies underlying genetic and microbial determinants, and establishes BA correlations with liver fat and plasma lipid parameters. We identify 27 genetic associations (p < 5 × 10-8) and 439 microbial correlations (FDR < 0.05) for 50 BA entities. Additionally, we report 111 correlations between BA and 88 lipid parameters (FDR < 0.05), mainly for C4 reflecting hepatic BA synthesis. Inter-individual variability in the plasma BA profile does not reflect hepatic BA synthetic pathways, but rather transport and metabolism within the enterohepatic circulation. Our study reveals genetic and microbial determinants of BAs in obesity and their relationship to disease-relevant lipid parameters that are important for the design of personalized therapies targeting BA-signaling pathways.


Subject(s)
Bile Acids and Salts/physiology , Lipid Metabolism/genetics , Liver/pathology , Metabolic Syndrome/physiopathology , Obesity/physiopathology , Aged , Aged, 80 and over , Humans , Middle Aged
14.
Nat Metab ; 2(10): 1135-1148, 2020 10.
Article in English | MEDLINE | ID: mdl-33067605

ABSTRACT

Circulating proteins are vital in human health and disease and are frequently used as biomarkers for clinical decision-making or as targets for pharmacological intervention. Here, we map and replicate protein quantitative trait loci (pQTL) for 90 cardiovascular proteins in over 30,000 individuals, resulting in 451 pQTLs for 85 proteins. For each protein, we further perform pathway mapping to obtain trans-pQTL gene and regulatory designations. We substantiate these regulatory findings with orthogonal evidence for trans-pQTLs using mouse knockdown experiments (ABCA1 and TRIB1) and clinical trial results (chemokine receptors CCR2 and CCR5), with consistent regulation. Finally, we evaluate known drug targets, and suggest new target candidates or repositioning opportunities using Mendelian randomization. This identifies 11 proteins with causal evidence of involvement in human disease that have not previously been targeted, including EGF, IL-16, PAPPA, SPON1, F3, ADM, CASP-8, CHI3L1, CXCL16, GDF15 and MMP-12. Taken together, these findings demonstrate the utility of large-scale mapping of the genetics of the proteome and provide a resource for future precision studies of circulating proteins in human health.


Subject(s)
Cardiovascular System/metabolism , Chromosome Mapping , Drug Delivery Systems , Genomics , ATP Binding Cassette Transporter 1/genetics , Asthma/genetics , Gene Knockdown Techniques , Genome-Wide Association Study , Humans , Inflammatory Bowel Diseases/genetics , Interleukin-1 Receptor-Like 1 Protein/genetics , Intracellular Signaling Peptides and Proteins/genetics , Linkage Disequilibrium , Mendelian Randomization Analysis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proteome , Quantitative Trait Loci , Receptors, CCR2/genetics , Receptors, CCR5/genetics
15.
Virol Sin ; 35(4): 378-387, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32297155

ABSTRACT

Some patients with chronic hepatitis B virus (HBV) infection failed to clear HBV, even persistently continue to produce antibodies to HBV. Here we performed a two stage genome wide association study in a cohort of Chinese patients designed to discover single nucleotide variants that associate with HBV infection and clearance of HBV. The first stage involved genome wide exome sequencing of 101 cases (HBsAg plus anti-HBs positive) compared with 102 control patients (anti-HBs positive, HBsAg negative). Over 80% of individual sequences displayed 20 × sequence coverage. Adapters, uncertain bases > 10% or low-quality base calls (> 50%) were filtered and compared to the human reference genome hg19. In the second stage, 579 chronic HBV infected cases and 439 HBV clearance controls were sequenced with selected genes from the first stage. Although there were no significant associated gene variants in the first stage, two significant gene associations were discovered when the two stages were assessed in a combined analysis. One association showed rs506121-"T" allele [within the dedicator of cytokinesis 8 (DOCK8) gene] was higher in chronic HBV infection group than that in clearance group (P = 0.002, OR = 0.77, 95% CI [0.65, 0.91]). The second association involved rs2071676-A allele within the Carbonic anhydrase (CA9) gene that was significantly elevated in chronic HBV infection group compared to the clearance group (P = 0.0003, OR = 1.35, 95% CI [1.15, 1.58]). Upon replication these gene associations would suggest the influence of DOCK8 and CA9 as potential risk genetic factors in the persistence of HBV infection.


Subject(s)
Genetic Variation , Genome, Human , Hepatitis B, Chronic/genetics , Hepatitis B, Chronic/virology , Adult , Aged , Asian People , DNA, Viral/genetics , Female , Genome-Wide Association Study , Hepatitis B virus , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Retrospective Studies , Risk Factors , Sequence Analysis, DNA
16.
Genomics ; 112(1): 442-458, 2020 01.
Article in English | MEDLINE | ID: mdl-30902755

ABSTRACT

The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country.


Subject(s)
Genetic Variation , Adult , Communicable Diseases/genetics , Demography , Haplotypes , Humans , INDEL Mutation , Pharmacogenetics , Phenotype , Phylogeography , Polymorphism, Single Nucleotide , Russia/ethnology , Selection, Genetic , Whole Genome Sequencing
17.
Nat Genet ; 50(12): 1752, 2018 12.
Article in English | MEDLINE | ID: mdl-30341443

ABSTRACT

In the version of this paper originally published, there was a typographical error. In the Discussion, the sentence "In line with this, Ep-CAM-deficient mice exhibited increased intestinal permeability and decreased ion transport60, which may contribute to CVD susceptibility risk59" originally read iron instead of ion transport. This error has been corrected in the HTML, PDF and print versions of the article.

18.
Nat Genet ; 50(11): 1524-1532, 2018 11.
Article in English | MEDLINE | ID: mdl-30250126

ABSTRACT

Despite a growing body of evidence, the role of the gut microbiome in cardiovascular diseases is still unclear. Here, we present a systems-genome-wide and metagenome-wide association study on plasma concentrations of 92 cardiovascular-disease-related proteins in the population cohort LifeLines-DEEP. We identified genetic components for 73 proteins and microbial associations for 41 proteins, of which 31 were associated to both. The genetic and microbial factors identified mostly exert additive effects and collectively explain up to 76.6% of inter-individual variation (17.5% on average). Genetics contribute most to concentrations of immune-related proteins, while the gut microbiome contributes most to proteins involved in metabolism and intestinal health. We found several host-microbe interactions that impact proteins involved in epithelial function, lipid metabolism, and central nervous system function. This study provides important evidence for a joint genetic and microbial effect in cardiovascular disease and provides directions for future applications in personalized medicine.


Subject(s)
Blood Proteins/genetics , Cardiovascular Diseases/blood , Cardiovascular Diseases/genetics , Cardiovascular Diseases/microbiology , Gastrointestinal Microbiome/physiology , Adult , Biological Variation, Individual , Blood Proteins/metabolism , Brain/physiology , Cohort Studies , Female , Genome-Wide Association Study , Host Microbial Interactions/genetics , Humans , Intestines/innervation , Intestines/microbiology , Lipid Metabolism/genetics , Male , Metagenome/genetics , Middle Aged , Netherlands , Oxidation-Reduction , Quantitative Trait Loci/genetics
19.
PLoS One ; 13(7): e0200423, 2018.
Article in English | MEDLINE | ID: mdl-29995946

ABSTRACT

A comparative analysis of whole genome sequencing (WGS) and genotype calling was initiated for ten human genome samples sequenced by St. Petersburg State University Peterhof Sequencing Center and by three commercial sequencing centers outside of Russia. The sequence quality, efficiency of DNA variant and genotype calling were compared with each other and with DNA microarrays for each of ten study subjects. We assessed calling of SNPs, indels, copy number variation, and the speed of WGS throughput promised. Twenty separate QC analyses showed high similarities among the sequence quality and called genotypes. The ten genomes tested by the centers included eight American patients afflicted with autoimmune hepatitis (AIH), plus one case's unaffected parents, in a prelude to discovering genetic influences in this rare disease of unknown etiology. The detailed internal replication and parallel analyses allowed the observation of two of eight AIH cases carrying a rare allele genotype for a previously described AIH-associated gene (FTCD), plus multiple occurrences of known HLA-DRB1 alleles associated with AIH (HLA-DRB1-03:01:01, 13:01:01 and 7:01:01). We also list putative SNVs in other genes as suggestive in AIH influence.


Subject(s)
Genotyping Techniques , Hepatitis, Autoimmune/genetics , Whole Genome Sequencing , Adolescent , Ammonia-Lyases/genetics , Child , Child, Preschool , Cohort Studies , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Glutamate Formimidoyltransferase/genetics , HLA-DRB1 Chains/genetics , Humans , INDEL Mutation , Male , Multifunctional Enzymes , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Quality Control , Russia , Time Factors
20.
BMC Genomics ; 19(1): 90, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29370748

ABSTRACT

BACKGROUND: SNP panels that uniquely identify an individual are useful for genetic and forensic research. Previously recommended SNP panels are based on DNA profiles and mostly contain intragenic SNPs. With the increasing interest in RNA expression profiles, we aimed for establishing a SNP panel for both DNA and RNA-based genotyping. RESULTS: To determine a small set of SNPs with maximally discriminative power, genotype calls were obtained from DNA and blood-derived RNA sequencing data belonging to healthy, geographically dispersed, Dutch individuals. SNPs were selected based on different criteria like genotype call rate, minor allele frequency, Hardy-Weinberg equilibrium and linkage disequilibrium. A panel of 50 SNPs was sufficient to identify an individual uniquely: the probability of identity was 6.9 × 10- 20 when assuming no family relations and 1.2 × 10- 10 when accounting for the presence of full sibs. The ability of the SNP panel to uniquely identify individuals on DNA and RNA level was validated in an independent population dataset. The panel is applicable to individuals from European descent, with slightly lower power in non-Europeans. Whereas most of the genes containing the 50 SNPs are expressed in various tissues, our SNP panel needs optimization for other tissues than blood. CONCLUSIONS: This first DNA/RNA SNP panel will be useful to identify sample mix-ups in biomedical research and for assigning DNA and RNA stains in crime scenes to unique individuals.


Subject(s)
DNA/analysis , Ethnicity/genetics , Genetics, Population , Patient Identification Systems/methods , Polymorphism, Single Nucleotide , RNA/analysis , DNA/genetics , DNA Fingerprinting , Gene Frequency , Genetic Testing , Genotype , High-Throughput Nucleotide Sequencing , Humans , Individuality , Linkage Disequilibrium , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...